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ABSTRACT

An important aspect of mechanism design in social choice
protocols and multiagent systems is to discourage insincere
and manipulative behaviour. We examine the computa-
tional complexity of false-name manipulation in weighted
voting games which are an important class of coalitional
voting games. Weighted voting games have received in-
creased interest in the multiagent community due to their
compact representation and ability to model coalitional for-
mation scenarios. Bachrach and Elkind in their AAMAS
2008 paper examined divide and conquer false-name manip-
ulation in weighted voting games from the point of view of
Shapley-Shubik index. We analyse the corresponding case of
the Banzhaf index and check how much the Banzhaf index of
a player increases or decreases if it splits up into sub-players.
A pseudo-polynomial algorithm to find the optimal split is
also provided. Bachrach and Elkind also mentioned ma-
nipulation via merging as an open problem. In the paper,
we examine the cases where a player annexes other play-
ers or merges with them to increase their Banzhaf index or
Shapley-Shubik index payoff. We characterize the compu-
tational complexity of such manipulations and provide lim-
its to the manipulation. The annexation non-monotonicity
paradox is also discovered in the case of the Banzhaf index.
The results give insight into coalition formation and manip-
ulation.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms

Algorithms, Economics, Theory

Keywords

Weighted voting games, Banzhaf index, Shapley-Shubik in-
dex, false-name manipulation, computational complexity

Cite as: False name manipulations in weighted voting games: splitting,
merging and annexation, H. Aziz and M. Paterson, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION

1.1 Motivation
Weighted voting games (WVGs) are mathematical models

which are used to analyze voting bodies in which the voters
have different numbers of votes. In WVGs, each voter is
assigned a non-negative weight and makes a vote in favour
of or against a bill. The bill is passed if and only if the
total weight of those voting in favour of the bill is greater
than or equal to some fixed quota. Power indices such as
the Banzhaf index measure the ability of a player in a WVG
to determine the outcome of the vote.

WVGs have received increased interest in the artificial
intelligence and agents community due to their ability to
model various coalition formation scenarios [15, 16]. Such
games have also been examined from the point of view of sus-
ceptibility to manipulations [5, 39]. WVGs and coalitional
voting games are also encountered in threshold logic, reli-
ability theory, neuroscience and logical computing devices
[33, 34, 31]. WVGs have been applied in various political
and economic organizations [23, 22, 1]. Voting power is used
in joint stock companies where each shareholder gets votes
in proportion to the ownership of a stock [19].

Elkind et al. [15] note that since WVGs have only two
possible outcomes, they do not fall prey to manipulation of
the type characterized by Gibbard-Satterthwaite [20]. How-
ever, there are various ways WVGs can be manipulated and
controlled. Splitting of a player into sub-players can be seen
as a false-name manipulation by an agent where it splits it-
self into multiple agents so that the sum of the utilities of
the split-up players is more than the utility of the original
player [5]. We examine situations when a player splitting
up into smaller players may be advantageous or disadvan-
tageous in the context of WVGs and Banzhaf indices. This
gives a better idea of how to devise WVGs in which manipu-
lation can be deterred. This may be done by keeping larger
or non-integer weights. Moreover, we also examine the case
of players merging to maximize their payoff in a WVG. This
was mentioned as an unexplored question in [5].

1.2 Outline
In Section 2, some basic definitions concerning simple

games, weighted voting games and power indices are pro-
vided. Section 3 provides a brief literature survey. In Sec-
tion 4, the case of players splitting up into sub-players in a
WVG to increase their Banzhaf index is analysed. We ex-
amine the extent to which the Banzhaf index of a player can
increase or decrease if it splits up into sub-players. From
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a computational perspective, it is #P-hard [30] to compute
the payoff in the WVG. A prospective manipulator could
still be interested in enabling a beneficial split even if he
cannot compute the actual payoff. Moreover, this model
is reasonable because the centre is assumed to have much
more computational resources than the players. In Section 5,
we prove that it is NP-hard even to decide whether a split
is beneficial or not. In the end a pseudo-polynomial algo-
rithm is proposed which returns ‘no’ if no beneficial split is
available and returns the optimal split otherwise. Section 6
is about the case of players annexing others or voluntarily
merging into blocs to maximize their payoffs. It is shown
that it is NP-hard to decide a beneficial merge for both the
Banzhaf index and the Shapley-Shubik index and to decide
a beneficial annexation for the case of the Banzhaf index.
Limits to manipulation are also provided. The final section
presents conclusions and ideas for future work.

2. PRELIMINARIES
In this section we give definitions and notations of key

terms. The set of voters is N = {1, ..., n}.
Definitions 1. A simple voting game is a pair (N, v)

where the valuation function v : 2N → {0, 1} has the prop-
erties that v(∅) = 0, v(N) = 1 and v(S) ≤ v(T ) whenever
S ⊆ T . A coalition S ⊆ N is winning if v(S) = 1 and los-
ing if v(S) = 0. A simple voting game can alternatively be
defined as (N, W ) where W is the set of winning coalitions.

Definitions 2. The simple voting game (N, W ) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a weighted voting

game (WVG). A WVG is denoted by [q; w1, w2, ..., wn] where
wi ≥ 0 is the voting weight of player i. By convention, we
take wi ≥ wj if i < j.

Usually, q > 1
2

∑
1≤i≤n wi so that there are no two mutu-

ally exclusive winning coalitions at the same time. WVGs
with this property are termed proper. Proper WVGs are
desirable because more than a majority is necessary to force
the decision.

Definitions 3. A player i is critical in a winning coali-
tion S when S ∈ W and S \ {i} /∈ W . For each i ∈ N ,
we denote the number of coalitions in which i is critical in
game v by ηi(v). The Banzhaf index of player i in WVG v

is βi = ηi(v)∑
i∈N ηi(v)

. The probabilistic Banzhaf index, β
′
i of

player i in game v is equal to ηi(v)/2n−1.

Definitions 4. The Shapley-Shubik value is the func-
tion κ that assigns to any simple game (N, v) and any voter
i a value κi(v) where κi =

∑
X⊆N (|X|−1)!(n−|X|)!(v(X)−

v(X − {i})). The Shapley-Shubik index of i is the function
φ defined by φi = κi

n!

3. RELATED WORK
Weighted voting games date back at least to John von

Neumann and Oskar Morgenstern who developed their the-
ory in their monumental book Theory of Games and Eco-
nomic Behavior [36]. WVGs and voting power indices have
been analyzed extensively in the game theory literature for
instance in [14, 32]. They have been applied to various eco-
nomic and political bodies such as the EU Council of Min-
isters and the IMF [23]. Power indices such as the Banzhaf

index and the Shapley-Shubik index originated in such a set-
ting in order to gauge the decision making ability of players.
These indices have now been utilized in different domains
such as networks [7]. Simple games and weighted voting
games are known by different names in other literatures and
communities. There is considerable work on similar models
in threshold logic [26].

As useful and succinct models for coalitional voting games,
WVGs have been utilized in multiagent systems. Voting
power indices in WVGs have received increased interest in
multiagent systems [17, 6, 4, 2]. The dimension of a multiple
weighted voting game is the minimum number of weighted
voting games required to represent it. The dimension of
multiple weighted voting games has been examined in [15]
and [13]. Moreover, the complexity of questions related to
important cooperative game solutions in WVGs such as the
core and nucleolus are considered in [16]. WVGs have also
been examined from the point of view of control and manip-
ulation. Zuckerman et al. [39] analyse how the centre might
control WVGs by changing the quota even if the weights are
fixed. The most relevant work is by Elkind et al. [5] where
they examine false-name manipulation in WVGs from the
point of view of the Shapley-Shubik index. In fact, our pa-
per answers problems posed by Elkind et al. Players form-
ing blocs have been considered by political scientists and
economists previously [18]. However, in this paper, a com-
plexity theoretic analysis of bloc forming manipulation has
also been undertaken for WVGs. False name manipulations
in open anonymous environments have been examined in
different domains such as coalitional games [38, 28, 27] and
auctions [37, 21]. The characteristic function by itself does
not give enough information to analyze false-name manipu-
lations especially if a player splits into sub-players. There-
fore Yokoo et al. [38] introduced the model where each player
has a subset of skills and the characteristic function assigns
values to the subset of skills. We notice that false-name ma-
nipulations in WVGs can still be analyzed directly without
considering more fine-grained representations.

4. SPLITTING

4.1 Background
In the real world, WVGs may be dynamic. Players might

have an incentive to split up into smaller players or merge
into voting blocks. Payoffs of players in a coalitional games
setting can be based on fairness, i.e., power indices, or they
can be based on the notion of stability, which includes many
cooperative game theoretic concepts such as core, nucleolus
etc. We examine the situation when the Banzhaf indices of
agents can be used as payoffs in a cooperative game theoretic
situation. Falsenthal and Machover [24] refer to this notion
of voting power as P-power since the motivation of agents
is prize-seeking as opposed to influence-seeking. However
Banzhaf indices have been considered as possible payments
in cooperative settings [35, 5] and they satisfy desirable ax-
ioms [14]. Splitting of a player can be seen as a false-name
manipulation by an agent, in which it splits itself into mul-
tiple agents so that the sum of the utilities of the split-up
players is more than the utility of the original player [5].

Splitting is not always beneficial. We give examples where,
if we use Banzhaf indices as payoffs of players in a WVG,
splitting can be advantageous, neutral or disadvantageous.
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Example 5. Splitting can be advantageous, neutral or dis-
advantageous:

• Disadvantageous splitting. In the WVG [5; 2, 2, 2] each
player has a Banzhaf index of 1/3. If the last player
splits up into two players, the new game is [5; 2, 2, 1, 1].
In that case, the split-up players have a Banzhaf index
of 1/8 each.

• Neutral splitting. In the WVG [4; 2, 2, 2] each player
has a Banzhaf index of 1/3. If the last player splits up
into two players, the new game is [4; 2, 2, 1, 1]. In that
case, the split-up players have a Banzhaf index of 1/6
each.

• Advantageous splitting. In the WVG [6; 2, 2, 2] each
player has a Banzhaf index of 1/3. If the last player
splits up into two players, the new game is [6; 2, 2, 1, 1].
In that case, the split-up players have a Banzhaf index
of 1/4 each.

We analyse the splitting of players in the unanimity WVG.

Proposition 6. In a unanimity WVG with q = w(N), if
Banzhaf indices are used as payoffs of agents in a WVG,
then it is beneficial for an agent to split up into several
agents.

Proof. In a WVG with q = w(N), the Banzhaf index of
each player is 1/n. Let player i split up into m+1 players. In
that case there is a total of n + m players and the Banzhaf
index of each player is 1/(n + m). In that case the total
Banzhaf index of the split up players is m+1

n+m
, and for n > 1,

m+1
n+m

> 1
n
. An exactly similar analysis holds for Shapley-

Shubik index.

However there is the same motivation for all agents to split
up into smaller players which would return the agents to
parity.

4.2 General case
We recall that a player is critical in a winning coalition

if the player’s exclusion makes the coalition losing. We will
also say that a player is critical for a losing coalition C if
the player’s inclusion results in the coalition winning.

Proposition 7. Let WVG v be [q; w1, . . . , wn]. If v trans-
forms to v′ by the splitting of player i into i′ and i′′, then
βi′(v

′) + βi′′(v
′) ≤ 2βi(v). Moreover, this upper bound is

asymptotically tight.

Proof. We assume that a player i splits up into i′ and
i′′ and that wi′ ≤ wi′′ . We consider a losing coalition C for
which i is critical in v (see Figure 1). Then w(C) < q ≤
w(C) + wi = w(C) + wi′ + wi′′ .

• If q − w(C) ≤ wi′ , then i′ and i′′ are critical for C in
v′.

• If wi′ < q−w(C) ≤ wi′′ , then i′ is critical for C ∪{i′′}
and i′′ is critical for C in v′. (This case is shown in
Figure 1.)

• If q − w(C) > wi′′ , then i′ is critical for C ∪ {i′′} and
i′′ is critical for C ∪ {i′} in v′.

C

}{ 'iC

}{ ''iC

Figure 1: Splitting of player i into i′ and i′′ .

Therefore we have ηi′(v
′) + ηi′′(v

′) = 2ηi(v) in each case.
Now we consider a player x in v which is other than

player i. If x is critical for a coalition C in v then x is
also critical for the corresponding coalition C′ in v′ where
we replace {i} by {i′, i′′}. Hence ηx(v) ≤ ηx(v′). Of course
x may also be critical for some coalitions in v′ which con-
tain just one of i′ and i′′, so the above inequality will not in
general be an equality. Moreover,

βi′(v
′) + βi′′(v

′) =
2ηi(v)

2ηi(v) +
∑

x∈N(v′)\{i′,i′′} ηx(v′)

≤ 2ηi(v)

2ηi(v) +
∑

x∈N(v)\{i} ηx(v)

≤ 2ηi(v)

ηi(v) +
∑

x∈N(v)\{i} ηx(v)
= 2βi(v)

We can prove that this coefficient of 2 is best possible. We
take a WVG [n; 2, 1, . . . , 1] with n + 1 players. We find that
η1 = n +

(
n
2

)
and for all other x, ηx = 1 +

(
n−1

2

)
. Therefore

β1 =
n +

(
n
2

)
n +

(
n
2

)
+ n(1 +

(
n−1

2

)
)

=
n + 1

(n − 2)2
∼ 1/n.

In case player 1 splits up into 1′ and 1′′ with weights 1
each, then for all players j, βj = 1

n+2
. Thus for large n,

β1′ + β1′′ = 2
n+2

∼ 2β1.

Moreover, we show that splitting into two players can de-
crease the Banzhaf index payoff by as much as a factor of
almost

√
π
2n

:

Example 8. Disadvantageous splitting. We take a WVG
v on n players where v = [3n/2; 2n, 1, . . . , 1]. For the sake
of simplicity, we assume that n is even. It is easy to see
that player 1 is a dictator. Now we consider the case where
v changes into v′ with player 1 splitting up into 1′ and 1′′

with weight n each. For player 1′ to be critical for a losing
coalition in v′, the coalition much exclude 1′′ and have from
n/2 to n − 1 players with weight 1 or it must include 1′′

and have from 0 to (n/2 − 1) players with weight 1. So
η1′(v

′) = η1′′(v
′) =

∑n
i=0

(
n−1

i

)
= 2n−1. Moreover, for a

smaller player x with weight 1 to be critical for a coalition
in v′, the coalition must include only one of 1′ or 1′′ and
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(n − 2)/2 of the n − 2 other smaller players. So, ηx(v′) =
2
(

n−2
(n−2)/2

)
. By using Stirling’s formula, we can approximate

ηx(v′) by
√

2
π(n−2)

2n−1. We see that:

βi′(v
′) = βi′′(v

′)

≈ 2n−1

2n−1 + 2n−1 + (n − 1)
√

2
π(n−2)

2n−1

=
1

2 + (n−1)√
n−2

√
2
π

∼
√

π

2n
.

We notice that the bounds on the effect of splitting on
the Banzhaf index are quite similar to those in the Shapley-
Shubik case.

5. COMPLEXITY OF FINDING A BENEFI-

CIAL SPLIT
From a computational perspective, it is #P-hard for a

manipulator to find the ideal splitting to maximize his pay-
off. An easier question is to check whether a beneficial split
exists or not. We define a Banzhaf version of the BENEFI-
CIAL SPLIT problem defined in [5].

Name: BENEFICIAL-BANZHAF-SPLIT
Instance: (v, i) where v is the WVG v = [q; w1, . . . , wn]
and player i ∈ {1, . . . , n}.
Question: Is there a way for player i to split his weight wi

between sub-players i1, . . . , im so that, in the new game v′,∑m
j=1 βij (v

′) > βi(v)?

Proposition 9. BENEFICIAL-BANZHAF-SPLIT is NP-
hard, and remains NP-hard even if the player can only split
into two players with equal weights.

Proof. We prove this by a reduction from an instance of
the classical NP-hard PARTITION problem to BENEFICIAL-
BZ-SPLIT.

Name: PARTITION
Instance: A set of k integer weights A = {a1, . . . , ak}.
Question: Is it possible to partition A, into two subsets
P1 ⊆ A, P2 ⊆ A so that P1 ∩ P2 = ∅ and P1 ∪ P2 = A and∑

ai∈A1
ai =

∑
ai∈A2

ai?

Given an instance of PARTITION {a1, . . . , ak}, we can
transform it to a WVG v = [q; w1, . . . , wn] with n = k +
1 where wi = 8ai for i = 1 to n − 1, wn = 2 and q =
4

∑k
i=1 ai + 2. After that, we want to see whether it can be

beneficial for player n with weight 2 to split into two sub-
players n and n+1 each with weight 1 to form a new WVG
v′ = [q; w1, . . . , wn−1, 1, 1]. Note that, since the weights are
integral, it is certainly not beneficial to split up a weight of
2 other than into 1 and 1.

If A is a ‘no’ instance of PARTITION, then we see that
no subset of the weights {w1, . . . , wn−1} can sum to 4

∑
i ai.

This implies that player n is a dummy. We see that even if
player n splits into sub-players, the sub-players are also dum-
mies. Therefore (v, n) is a ‘no’ instance of BENEFICIAL-
BZ-SPLIT.

Now let us assume that A is a ‘yes’ instance of PARTI-
TION. In that case, let the number of subsets of weights
{w1, . . . wn−1} summing to 4

∑
i ai be x. Then ηn(v) = x.

For i ≤ n − 1, player i can be critical in winning coalition
with weight exactly q or more than q. We note that exactly
half of the x subsets of {w1, . . . wn−1} summing to 4

∑
i ai

contain wi. If player i is critical in a coalition C which is a
subset of {w1, . . . wn−1} then i is also critical in C ∪ {wn}.
Therefore for i ≤ n − 1, ηi(v) = x

2
+ 2yi where yi is the

number of subsets of {w1, . . . wn−1} in which i is critical.
We see that

βn(v) =
x

x + kx
2

+ 2y
where

∑
i≤n−1

yi = y.

However, in the new game v′, ηn(v′) = ηn+1(v
′) = x

and for i ≤ n − 1, ηi(v
′) = x

2
+ 4yi, since there are now 4

coalitions, C, C ∪ {wn}, C ∪ {wn+1}, C ∪ {wn, wn+1}, corre-
sponding to each C. So

βn(v′) + βn+1(v
′) =

2x

2x + kx/2 + 4y
> βn(v),

since x > 0. Thus, a ‘yes’ instance of PARTITION implies
a ‘yes’ instance of BENEFICIAL-BZ-SPLIT.

In terms of minimizing chances of manipulation, we see
that computational complexity acts as a barrier. This idea
of using computational complexity to model bounded ratio-
nality is well explained by Papadimitriou and Yannakakis
[29]. In the context of complexity of voting, it was a se-
ries of groundbreaking papers by Bartholdi, Orlin, Tovey,
and Trick [8, 9, 10, 11] that showed how important com-
putationally complexity consideration is in terms of ease of
computing winners and difficulty of manipulation.

5.1 Pseudopolynomial algorithm
It is well known that, although computing Banzhaf indices

of players in a WVG is NP-hard, there are polynomial time
algorithms using dynamic programming [25] or generating
functions [12] to compute Banzhaf indices if the weights of
players are polynomial in n. Let this pseudo-polynomial
algorithm be BanzhafIndex(v, i) which takes a WVG v and
an index i as input and returns βi(v), the Banzhaf index of
player i in v. We use a similar argument as in [5] to show
that a polynomial algorithm exists to find a beneficial split
if the weights of players are polynomial in n and the player i
in question can split into up to a constant k number of sub-
players with integer weights. Algorithm 1 takes as input
a WVG v and player i which can split into a maximum
of k number of players. The algorithm returns ‘no’ if no
beneficial split exists and returns the optimal split otherwise.
Whenever player i in WVG v splits according to a split s,
we denote the new game by vi,s.

We see that the total number of splits for player i is equal
to q(wi, k) where q(n, k) is the partition function which gives
the number of partitions of n with k or fewer addends. It
is clear that for a constant k, the number of splits of player
i is less than (wi)

k which is a polynomial in n. Since the
computational complexity for each split is also a polynomial
in n, therefore Algorithm 1 is polynomial in n if the weights
are polynomial in n.

6. MERGING AND ANNEXATION
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Algorithm 1 BeneficialSplitInWVG

Input: (v, i) where v = [q; w1, . . . , wn] and i is the player
which wants to split into a maximum of k sub-players.
Output: Returns NO if there is no beneficial split. Other-
wise returns the optimal split (wi1 , . . . , wik′ ) where k′ ≤ k,

and
∑k′

j=1 wij = wi.

1: BeneficialSplitExists = false
2: BestSplit = ∅
3: BestSplitValue = −∞
4: βi = BanzhafIndex(v, i)
5: for j = 2 to k do
6: for Each possible split s where wi = wi1 + . . . + wij

do
7: SplitValue =

∑j
a=1 BanzhafIndex(vi,s, ia)

8: if SplitValue > βi then
9: BeneficialSplitExists = true

10: if SplitValue > BestSplitValue then
11: BestSplit = s
12: BestSplitValue = SplitValue
13: end if
14: end if
15: end for
16: end for
17: if BeneficialSplitExists = false then
18: return false
19: else
20: return BestSplit
21: end if

For the case of players merging to gain advantage, we ex-
amine two cases. One is annexation where one voter takes
the voting weight of other voters. The annexation is ad-
vantageous if the payoff of the new merged coalition in the
new game is greater than the payoff of the annexer in the
original game. The other case is voluntary merging where
voters merge to become a bloc for which their new payoff
is more than the sum of their individual payoffs. For every
game (N, v), the result of the merging of players in coalition
S is another game ((N \ S) ∪ {&S}, v&S).

We define the problem of checking a beneficial voluntary
merge or annexation:

Name: BENEFICIAL-BZ-MERGE
Instance: (v, S) where v is the WVG v = [q; w1, . . . , wn]
and S ⊂ N .
Question: Suppose coalition S merges to form a new game
((N \ S) ∪ {&S}, v&S). Is β&S(v&S) >

∑
i∈S βi(v)?

Name: BENEFICIAL-BZ-ANNEXATION
Instance: (v, S, i) where v is the WVG v = [q; w1, . . . , wn],
i is the ith player in v and S ⊂ (N \ {i}).
Question: If i annexes coalition S to form a new game
((N \ (S∪{i}))∪{&(S∪{i})}, v&(S∪{i})), is βi(v&(S∪{i})) >
βi(v)?

If Shapley-Shubik indices are used as payoffs in place of
Banzhaf indices, then the corresponding problems are de-
fined with BZ replaced by SS so that BENEFICIAL-SS-
MERGE corresponds to BENEFICIAL-BZ-MERGE. Felsen-
thal and Machover [18] prove that if a player annexes other
players, then it cannot be the case that the annexation is

disadvantageous if the Shapley-Shubik indices are used as
payoffs. We provide a clear and simple proof of this theo-
rem. Let player i be critical for a coalition S in WVG v.

Then the contribution to φi(v) from this is (|S|−1)!(n−|S|)!
n!

.
We consider a game v&{i,j} where i annexes j. For every S
for which i is critical in v, the contribution to φ&{i,j}(v&{i,j})
is either (|S|−2)!(n−|S|)!

(n−1)!
or (|S|−1)!(n−|S|−1)!

(n−1)!
. For either case

we see that φ&{i,j}(v&{i,j}) > φi(v). However Felsenthal
and Machover [18] show that, for the case of the Banzhaf
index, annexation could be disadvantageous. They provide
a 13-player WVG for which annexation is disadvantageous,
which is the simplest example they could find. We provide
an 8-player WVG where annexation is disadvantageous:

Example 10. In WVG [13; 7, 6, 1, 1, 1, 1, 1, 1], player 1 has
Banzhaf index 0.48507. If player 1 annexes one of the small
players, the new game is [13; 8, 6, 1, 1, 1, 1, 1] and the Banzhaf
index becomes 0.47826.

For the case where the merging is voluntary instead of an
annexation, for both the Banzhaf index and Shapley-Shubik
index, merging can be advantageous or disadvantageous. As
in the case of splitting, we expect it to be hard to find a
beneficial merge:

Proposition 11. BENEFICIAL-BZ-MERGE is NP-hard.

Proof. Given an instance of PARTITION {a1, . . . , ak},
we can transform it to a WVG v = [q; w1, . . . , wn] where
n = k + 3, wi = 8ai for i = 1 to n − 3, wn−2 = wn−1 =
wn = 1, and q = 4

∑k
i=1 ai + 2.

If A is a ‘no’ instance of PARTITION, then we see that
a subset of weights {w1, . . . wn−3} cannot sum to 4

∑
i ai.

This implies that players (n−2), (n−1) and n are dummies.
Even if players n and (n−1) merge together, the new player
&{n − 1, n} remains a dummy in the new game v&{n−1,n}.

Now let us assume that A is a ‘yes’ instance of PARTI-
TION. In that case, let the number of subsets of weights
{w1, . . . wn−3} summing to 4

∑
i ai be x. For i ≤ n − 3,

player i can be critical in winning coalitions with weight q
or q+1 or more than q+1. The number of coalitions for the
first two cases are 3x/2 and x/2, respectively, corresponding
to the participation of either 2 or 3 of the unit players. The
third case corresponds to coalitions in which the three unit
players are dummies. Therefore for i ≤ n− 3, ηi = 4x

2
+ 8yi

where yi is the number of subsets of {w1, . . . , wn−3} in which
i is critical. Moreover, ηn−2(v) = ηn−1(v) = ηn(v) = 2x,
since each unit player is critical only when exactly one other
of these is in the coalition. Then

βn(v) =
2x

6x + 4kx
2

+ 8y
, where

∑
i≤n−3

yi = y.

In the new game v&{n−1,n}, η&{n−1,n}(v&{n−1,n}) is 2x
but ηn−2(v&{n−1,n}) is 0. For i ≤ n − 3, ηi(v&{n−1,n}) is
2x
2

+ 4yi. We see that

β&{n−1,n}(v&{n−1,n}) =
2x

2x + 2kx/2 + 4y
.

Therefore,

β&{n−1,n}(v&{n−1,n}) > βn(v) + βn−1(v),

which means that n and (n − 1) had a beneficial merge. It
has been shown that a ‘yes’ instance of PARTITION implies
a ‘yes’ instance of BENEFICIAL-BZ-MERGE.
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Proposition 12. BENEFICIAL-BZ-ANNEXATION is
NP-hard.

Proof. Given an instance of PARTITION, {a1, . . . , ak},
we can transform it to a WVG v = [q; w1, . . . , wn] where
n = k+2, wi = 8ai for i = 1 to n−2, wn−1 = 1, wn = 1 and
q = 4

∑k
i=1 ai + 2. Just as in Proposition 11, we see that

a ‘no’ instance of partition implies that wn−1 and wn are
dummies even if n annexes (n−1). However, a ‘yes’ instance
of partition implies that player n benefits by annexing player
(n − 1).

Proposition 13. BENEFICIAL-SS-MERGE is NP-hard

Proof. Given an instance of PARTITION {a1, . . . , ak},
we can transform it to a WVG v = [q; w1, . . . , wn] where
n = k + 3, wi = 8ai for i = 1 to n − 2, wn−2 = wn−1 =
wn = 1, and q = 4

∑k
i=1 ai + 2.

If A is a ‘no’ instance of PARTITION, then we see that
a subset of weights {w1, . . . wn−3} cannot sum to 4

∑
i ai.

This implies that players (n−2), (n−1) and n are dummies.
Even if player n and (n− 1) merge together, the new player
&{n − 1, n} remains a dummy in the new game v&{n−1,n}.

Now let us assume that A is a ‘yes’ instance of PAR-
TITION. For each partition (P1, P2) where |P1| = p1 and
|P2| = p1, we check the number of permutations correspond-
ing to (P1, P2). In the original game v, the contribution to
the Shapley-Shubik payoff for either player n or (n − 1) by
the permutations corresponding to (P1, P2) is

2(p1 + 1)!(p2 + 1)!

n!
=

p1!p2!

n!
2(p1 + 1)(p2 + 1).

If players n and n− 1 merge into bloc &{n− 1, n}, then the
contribution to the Shapley-Shubik payoff to bloc &{n−1, n}
by the permutations corresponding to (P1, P2) is

p1!(p2 + 1)! + (p1 + 1)!p2!

(n − 1)!
=

p1!p2!

n!
(n(p1 + 1 + p2 + 1)).

For the merge to be beneficial, it is required that the sum of
the Shapley-Shubik indices of (n − 1) and n in the original
game v is less than the Shapley-Shubik index of &{n− 1, n}
in the game v&{n−1,n}, i.e., 4(p1 + 1)(p2 + 1) < n(p1 + 1 +
p2 + 1). Since (p1 + 1) + (p2 + 1) = n − 1, we have

4(p1+1)(p2+1) ≤ 4

(
n − 1

2

)2

< n(n−1) = n(p1+1+p2+1),

and so φn−1(v) + φn(v) < φ&{n−1,n}(v&{n−1,n}).

We examine the limits of advantage or disadvantage for
the case of the annexation of another player to increase the
Banzhaf index.

Proposition 14.
βi(v)+βj(v)

2
≤ βi(v&({i,j})) ≤ 1.

Proof. Let v be WVG [q; w1, . . . , wn]. Suppose i an-
nexes or merges with player j and v′ is v&({i,j}). Then the
new game is ((N \ {j}) ∪ {&({i, j})}, v′). From the proof
of Proposition 7, we see that η&({i,j})(v

′) equals 1
2
(βi(v) +

βj(v)).
Now consider a player x which is other than player i or

player j. Let S be coalition such that S ⊆ N \ {i, j, x}. If
x is critical for S in v then x is critical for S in v′. If x is
critical for S ∪ {i, j} in v then x is critical for S ∪ &({i, j})
in v′. However, x may also be critical for S ∪ {i} or S ∪ {j}
in v. So ηx(v) ≥ ηx(v′). We see that:

β&({i,j})(v
′) =

η&({i,j})(v
′)

η&({i,j})(v′) +
∑

x∈(N\{i,j}) ηx(v′)

=
1
2
(ηi(v) + ηj(v))

1
2
(ηi(v) + ηj(v)) +

∑
x∈(N\{i,j}) ηx(v′)

≥
1
2
(ηi(v) + ηj(v))

ηi(v) + ηj(v) +
∑

x∈(N\{i,j}) ηx(v)

=
1

2
(βi(v) + βj(v)).

The upper bound is tight and easy to observe. If player
i is a dummy and j is a dictator then βi(v) = 0 whereas
βi(v

′) = 1. The upper bound can also be achieved by two
big enough players joining forces.

We have seen that annexation can be disadvantageous in
the case of the Banzhaf index. One would at least expect
that the Banzhaf index payoff after annexing another player
to be monotone in the power of the annexed player. Sur-
prisingly, this is not the case. Suppose wi ≥ wj ≥ wk in a
WVG v. We provide an example where βi,k > βi, j. We call
this the annexation non-monotonicity paradox :

Example 15. In the WVG [9; 3, 3, 2, 1, 1, 1] we see that
player 2 has more weight than player 3. However if player
1 annexes player 2 to form game [9; 6, 2, 1, 1, 1], its Banzhaf
index is 0.4, whereas if player 1 annexes player 3 to form
game [9; 5, 3, 1, 1, 1], its Banzhaf index is 0.411765.

Proposition 16. For any coalition, S ⊂ N \{i}, φi(v) ≤
φi(v&({i}∪S)) ≤ 1.

Proof. The lower bound follows from the result by Felsen-
thal and Machover [18] that annexation cannot decrease
the Shapley-Shubik index of a player. Moreover, the up-
per bound is tight and easily attainable if {i} ∪ S is big
enough.

Proposition 17. For the unanimity game and for both
the Shapley-Shubik index and Banzhaf index:

1. it is disadvantageous for a coalition to merge;

2. it is advantageous for a player to annex.

Proof. We check each case separately:

1. This is expected considering Proposition 6. If k players
merge, then the payoff of the new coalition is 1/(n −
k + 1). It is easy to see that 1/(n − k + 1) < k/n.

2. For a unanimity WVG with n players, the payoff of
each player is 1/n. If a player annexes k − 1 other
players, its payoff is 1/(n − k + 1) which is more than
1/n.

In a WVG, if player i annexes a dummy, then there is no
difference to the Banzhaf index payoff of each player. This is
because the Banzhaf value of each player reduces to half of
the original Banzhaf value. Moreover, it follows from Propo-
sition 14 that if a player annexes a player bigger than itself,
its Banzhaf index can only increase. Thus annexation could
only be disadvantageous, if a player annexes a smaller player.
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Table 1: Complexity of False Name Manipulations in WVGs
Banzhaf index Shapley-Shubik Index

SPLITTING NP-hard NP-hard [5]
MERGING NP-hard NP-hard
ANNEXATION NP-hard advantageous [18]
SPLITTING in unanimity game advantageous advantageous [5]
MERGING in unanimity game disadvantageous disadvantageous
ANNEXATION in unanimity game advantageous advantageous

Although, deciding a beneficial merge or annexation is com-
putationally difficult, it may often be easier in practice. We
propose a simple heuristic to get beneficial annexations or
at least to avoid disadvantageous annexations. It appears to
be a better strategy to annex fewer players with some total
weight than more players with the same total weight. This
is because, while annexing, the annexer does not want to
increase the payoff of other players significantly.

7. CONCLUSIONS
Weighted voting games are important game models in

multiagent systems. We have investigated the impact on
the Banzhaf power distribution due to a player splitting into
smaller players in a weighted voting game. We have also
considered the case of manipulation via annexation and vol-
untary merging when the payoff is according to the Banzhaf
index or the Shapley-Shubik index. Both the complexity
of manipulation and the limits of manipulation are exam-
ined. The complexity results are summarised in Table 1.
The Shapley-Shubik index appears to be a more desirable
solution because annexation does not decrease the payoff of
a player. It is seen that manipulation may be discouraged by
keeping weights which are large or non-integers. The finer,
more detailed, analysis for players splitting into more than
two players or merging into bigger blocs is still unexplored.
Although, it is NP-hard to evaluate different false-name ma-
nipulations, it may be the case that certain instances of
WVGs are more susceptible to manipulation [3]. A careful
investigation of heuristics for false-name manipulation is also
a promising area of research. There is scope to analyse such
false-name manipulations with respect to other cooperative
game-theoretic solutions. A particularly suitable solution to
consider could be the nucleolus which not only always ex-
ists but is also unique. Further examination into various
aspects of manipulation in weighted voting games promises
to give better insight into designing fairer and manipulation-
resistant systems. Another interesting question is to what
extent can the results be applied to more general cooperative
games.
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